Optimization of iodine number of carbon black obtained from waste tire pyrolysis plant via response surface methodology

响应面法优化废轮胎热解装置所得炭黑的碘值

阅读:7
作者:Natthawat Thonglhueng, Rinlada Sirisangsawang, Somboon Sukpancharoen, Natacha Phetyim

Abstract

Recovered carbon black (RCB) obtained from a tire pyrolysis plant was subjected to chemical and thermal treatments for application as a filler in rubber compounds. Carbon black was chemically treated with nitric acid by varying the temperature, time, and chemical-to-carbon black ratio. The iodine number was optimized using response surface methodology (RSM) and the Design Expert software. To increase the iodine number, the Box-Behnken design was utilized to optimize three parameters: temperature (30-50 °C), time (6-24 h), and ratio of carbon black to chemical (0.25-1.0 g/mL). Under optimal conditions, the surface area increased, and RCB was upgraded to commercial carbon black N330. RSM analysis indicted that the iodine number was maximized (117.34 mg/g) after treatment at 46.74 °C for 23.24 h using a carbon black/chemical ratio of 0.76 g/mL. The simulated data were experimentally validated by analyzing RCB_ EQ, which yielded an iodine number of 119.12 mg/g. The content of most heavy metals in RCB decreased by more than 90%, whereas the sulfur and chlorine content decreased by 43.27% and 53.96%, respectively. Based on thermogravimetric analysis, the RCB_13 carbon black additive was eliminated at temperatures of 620-800 °C.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。