Bioinformatics and Network Pharmacology Identify the Therapeutic Role of Guominkang in Allergic Asthma by Inhibiting PI3K/Akt Signaling

生物信息学和网络药理学证实过敏康通过抑制PI3K/Akt信号传导对过敏性哮喘的治疗作用

阅读:8
作者:Honglei Zhang #, Haiyun Zhang #, Lei Wang, Yihang Zhang, Linhan Hu, Juntong Liu, Yumei Zhou, Ji Wang

Background

As a classical regulating formula, Guominkang (GMK) has been extensively employed in clinical practice to treat the allergic asthma (AA) and alleviate allergy symptoms, however, the underlying mechanism remains elusive. The

Conclusion

Based on our findings, GMK potentially acts via the PI3K/Akt pathway and alleviates allergic symptoms in AA.

Methods

Potential target genes for the compounds were identified from the database and subjected to functional enrichment analysis. Subsequently, a protein-protein interaction (PPI) network was constructed in order to screen the core target and confirmed by molecular docking. An asthma model was further developed in mice and airway hyperresponsiveness and lung pathological changes were observed following drug administration. The expression of PI3K and AKT proteins in lung tissues was then detected by Western blotting. Subsequently, the GSE104468 data were normalised and visualised using the R language, compared to the PI3K-Akt pathway gene set to identify overlapping genes, constructed a PPI network and analysed correlations between genes.

Results

267 compounds and 475 disease-relevant GMK targets have been obtained, primarily in the areas of chemokine binding, drug binding, and PI3K-Akt pathway modulation. Molecular docking simulations revealed that predicted targets (PI3K, TNF, IL6, AKT1, SRC, TP53, and STAT3) could be closely bonded with component of GMK. According to in vivo experiments, GMK could reduce mucus obstruction and airway inflammation (P < 0.05), decrease airway hyperresponsiveness (P < 0.05), and inhibited the PI3K-Akt pathway (P < 0.05). After normalising the genes in the dataset between AA and healthy individuals, GO showed that 388 DEGs were associated with PI3K/AKT signaling pathway. The PPI network showed that the overlapping gene were located in the centre of asthma-associated network and that exhibited a correlation with the PI3K-Akt signaling pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。