Synthesis, Computational Analysis, and Antiproliferative Activity of Novel Benzimidazole Acrylonitriles as Tubulin Polymerization Inhibitors: Part 2

新型苯并咪唑丙烯腈作为微管蛋白聚合抑制剂的合成、计算分析和抗增殖活性:第 2 部分

阅读:8
作者:Anja Beč, Lucija Hok, Leentje Persoons, Els Vanstreels, Dirk Daelemans, Robert Vianello, Marijana Hranjec

Abstract

We used classical linear and microwave-assisted synthesis methods to prepare novel N-substituted, benzimidazole-derived acrylonitriles with antiproliferative activity against several cancer cells in vitro. The most potent systems showed pronounced activity against all tested hematological cancer cell lines, with favorable selectivity towards normal cells. The selection of lead compounds was also tested in vitro for tubulin polymerization inhibition as a possible mechanism of biological action. A combination of docking and molecular dynamics simulations confirmed the suitability of the employed organic skeleton for the design of antitumor drugs and demonstrated that their biological activity relies on binding to the colchicine binding site in tubulin. In addition, it also underlined that higher tubulin affinities are linked with (i) bulkier alkyl and aryl moieties on the benzimidazole nitrogen and (ii) electron-donating substituents on the phenyl group that allow deeper entrance into the hydrophobic pocket within the tubulin's β-subunit, consisting of Leu255, Leu248, Met259, Ala354, and Ile378 residues.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。