Robust nonparametric quantification of clustering density of molecules in single-molecule localization microscopy

单分子定位显微镜中分子聚集密度的稳健非参数量化

阅读:5
作者:Shenghang Jiang, Seongjin Park, Sai Divya Challapalli, Jingyi Fei, Yong Wang

Abstract

We report a robust nonparametric descriptor, J'(r), for quantifying the density of clustering molecules in single-molecule localization microscopy. J'(r), based on nearest neighbor distribution functions, does not require any parameter as an input for analyzing point patterns. We show that J'(r) displays a valley shape in the presence of clusters of molecules, and the characteristics of the valley reliably report the clustering features in the data. Most importantly, the position of the J'(r) valley ([Formula: see text]) depends exclusively on the density of clustering molecules (ρc). Therefore, it is ideal for direct estimation of the clustering density of molecules in single-molecule localization microscopy. As an example, this descriptor was applied to estimate the clustering density of ptsG mRNA in E. coli bacteria.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。