Physiological and Proteomic Analysis of Various Priming on Rice Seed under Chilling Stress

不同引发方式对水稻种子低温胁迫的生理及蛋白质组学分析

阅读:6
作者:Hua Zhang, Guo Hui, Guoqing Gao, Izhar Ali, Maoyan Tang, Lei Chen, Xiaoyuan Zhong, Ligeng Jiang, Tianfeng Liang, Xiaoli Zhang

Abstract

Rice (Oryza sativa L.) cultivation using direct seeding is susceptible to chilling stress, particularly during seed germination and early seedling growth in the early season of a double cropping system. Alternatively, seed priming with various plant growth-promoting hormones is an effective technique to promote rapid and uniform emergence under chilling stress. Therefore, we evaluated the impact of gibberellin A3 (GA3) and brassinolide (BR) priming on rice seed emergence, examining their proteomic responses under low-temperature conditions. Results indicated that GA3 and BR increased the seed germination rate by 22.67% and 7.33% at 72 h and 35% and 15% at 96 h compared to the control (CK), respectively. Furthermore, proteomic analysis identified 2551, 2614, and 2592 differentially expressed proteins (DEPs) in GA, BR, and CK, respectively. Among them, GA exhibited 84 upregulated and 260 downregulated DEPs, while BR showed 112 upregulated and 102 downregulated DEPs, and CK had 123 upregulated and 81 downregulated DEPs. Notably, under chilling stress, both GA3 and BR are involved in peroxide metabolism, phenylpropanoid biosynthesis, and inositol phosphate metabolism, enhancing antioxidant capacity and providing energy substances for germination. In addition, GA3 triggers the specific regulation of stress responsive protein activation, GTP activation, and ascorbic acid biosynthesis and promotes the stability and integrity of cell membranes, as well as the synthesis of cell walls, providing physical defense for seeds to resist low temperatures. At the same time, BR triggers specific involvement in ribosome synthesis and amino acid synthesis, promoting biosynthetic ability and metabolic regulation to maintain plant life activities under low-temperature stress. Furthermore, the various genes' expression (OsJ_16716, OsPAL1, RINO1) confirmed GA3 and BR involved in peroxide metabolism, phenylpropanoid biosynthesis, and inositol phosphate metabolism, enhancing antioxidant capacity and providing energy substances for germination. This study provides valuable insights into how rice seed embryo responds to and tolerates chilling stress with GA3 seed priming.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。