Bre Enhances Osteoblastic Differentiation by Promoting the Mdm2-Mediated Degradation of p53

Bre 通过促进 Mdm2 介导的 p53 降解来增强成骨细胞分化

阅读:4
作者:Fujun Jin, Yiliang Wang, Xiaojing Wang, Yanting Wu, Xiaoyan Wang, Qiuying Liu, Yexuan Zhu, Enqi Liu, Jianglin Fan, Yifei Wang

Abstract

Bre is a conserved cellular protein expressed in various tissues. Its major function includes DNA damage repair and anti-apoptosis. Recent studies indicate that Bre is potentially involved in stem cell differentiation although pathophysiological significance along with the molecular mechanisms is still unclear. Here, we report that Bre protein was substantially expressed in the bone tissue and its expression was highly upregulated during the osteogenic differentiation. To test a hypothesis that Bre plays functional roles in the process of osteogenic differentiation, we examined the expression of Bre in an osteoporosis mouse model. Compared with the normal bone tissue, Bre expression in osteoporotic bone was also significantly reduced. Moreover, knockdown of Bre in the mouse bone marrow mesenchymal cells significantly reduced the expression of osteogenic marker genes, the alkaline phosphatase activity, and the mineralization capacity, while overexpression of Bre greatly promoted the osteogenesis both in vitro and in vivo. Interestingly, we founded that knockdown of Bre led to activation of the p53 signaling pathways exhibited by increased p53, p21, and Mdm2. However, when we inhibited the p53 by siRNA silencing or pifithrin-α, the impaired osteogenesis caused by Bre knockdown was greatly restored. Finally, we found that Bre promoted the Mdm2-mediated p53 ubiquitination and degradation by physically interacting with p53. Taken together, our results revealed a novel function of Bre in osteoblast differentiation through modulating the stability of p53. Stem Cells 2017;35:1760-1772.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。