Heterogeneous abnormalities of in-vivo left ventricular calcium influx and function in mouse models of muscular dystrophy cardiomyopathy

肌营养不良性心肌病小鼠模型中左心室钙内流和功能的异质性异常

阅读:5
作者:Elizabeth Greally, Benjamin J Davison, Alison Blain, Steve Laval, Andrew Blamire, Volker Straub, Guy A MacGowan

Background

Manganese-enhanced cardiovascular magnetic resonance (MECMR) can non-invasively assess myocardial calcium influx, and calcium levels are known to be elevated in muscular dystrophy cardiomyopathy based on cellular studies.

Conclusions

Despite both mouse models exhibiting increased in-vivo calcium influx at an early stage in the development of the cardiomyopathy before left ventricular hypertrophy, there are distinct phenotypical differences between the 2 models in terms of heart rates, hemodynamics and responses to calcium channel inhibitors.

Methods

Left ventricular functional studies and MECMR were performed in mdx mice (model of Duchenne muscular dystrophy, 24 and 40 weeks) and Sgcd -/- mice (limb girdle muscular dystrophy 2 F, 16 and 32 weeks), compared to wild type controls (C57Bl/10, WT).

Results

Both models had left ventricular hypertrophy at the later age compared to WT, though the mdx mice had reduced stroke volumes and the Sgcd -/- mice increased heart rate and cardiac index. Especially at the younger ages, MECMR was significantly elevated in both models (both P < 0.05 versus WT). The L-type calcium channel inhibitor diltiazem (5 mg/kg i.p.) significantly reduced MECMR in the mdx mice (P < 0.01), though only with a higher dose (10 mg/kg i.p.) in the Sgcd -/- mice (P < 0.05). As the Sgcd -/- mice had increased heart rates, to determine the role of heart rate in MECMR we studied the hyperpolarization-activated cyclic nucleotide-gated channel inhibitor ZD 7288 which selectively reduces heart rate. This reduced heart rate and MECMR in all mouse groups. However, when looking at the time course of reduction of MECMR in the Sgcd -/- mice at up to 5 minutes of the manganese infusion when heart rates were matched to the WT mice, MECMR was still significantly elevated in the Sgcd -/- mice (P < 0.01) indicating that heart rate alone could not account for all the increased MECMR. Conclusions: Despite both mouse models exhibiting increased in-vivo calcium influx at an early stage in the development of the cardiomyopathy before left ventricular hypertrophy, there are distinct phenotypical differences between the 2 models in terms of heart rates, hemodynamics and responses to calcium channel inhibitors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。