N-acylethanolamine signaling in tobacco is mediated by a membrane-associated, high-affinity binding protein

烟草中的 N-酰基乙醇胺信号传导由膜相关的高亲和力结合蛋白介导

阅读:6
作者:Swati Tripathy, Kathryn Kleppinger-Sparace, Richard A Dixon, Kent D Chapman

Abstract

N-Acylethanolamines (NAEs) are fatty acid derivatives found as minor constituents of animal and plant tissues, and their levels increase 10- to 50-fold in tobacco (Nicotiana tabacum) leaves treated with fungal elicitors. Infiltration of tobacco leaves with submicromolar to micromolar concentrations of N-myristoylethanolamine (NAE 14:0) resulted in an increase in relative phenylalanine ammonia-lyase (PAL) transcript abundance within 8 h after infiltration, and this PAL activation was reduced after co-infiltration with cannabinoid receptor antagonists (AM 281 and SR 144528). A saturable, high-affinity specific binding activity for [(3)H]NAE 14:0 was identified in suspension-cultured tobacco cells and in microsomes from tobacco leaves (apparent K(d) of 74 and 35 nM, respectively); cannabinoid receptor antagonists reduced or eliminated specific [(3)H]NAE 14:0 binding, consistent with the physiological response. N-Oleoylethanolamine activated PAL2 expression in leaves and diminished [(3)H]NAE 14:0 binding in microsomes, whereas N-linoleoylethanolamine did not activate PAL2 expression in leaves, and did not affect [(3)H]NAE 14:0 binding in microsomes. The nonionic detergent dodecylmaltoside solubilized functional [(3)H]NAE 14:0-binding activity from tobacco microsomal membranes. The dodecylmaltoside-solubilized NAE-binding activity retained similar, but not identical, binding properties to the NAE-binding protein(s) in intact tobacco microsomes. Additionally, high-affinity saturable NAE-binding proteins were identified in microsomes isolated from Arabidopsis and Medicago truncatula tissues, indicating the general prevalence of these binding proteins in plant membranes. We propose that plants possess an NAE-signaling pathway with functional similarities to the "endocannabinoid" pathway of animal systems and that this pathway, in part, participates in xylanase elicitor perception in tobacco.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。