Mieap, a p53-inducible protein, controls mitochondrial quality by repairing or eliminating unhealthy mitochondria

Mieap 是一种 p53 诱导蛋白,通过修复或消除不健康的线粒体来控制线粒体质量

阅读:5
作者:Noriaki Kitamura, Yasuyuki Nakamura, Yuji Miyamoto, Takafumi Miyamoto, Koki Kabu, Masaki Yoshida, Manabu Futamura, Shizuko Ichinose, Hirofumi Arakawa

Abstract

Maintenance of healthy mitochondria prevents aging, cancer, and a variety of degenerative diseases that are due to the result of defective mitochondrial quality control (MQC). Recently, we discovered a novel mechanism for MQC, in which Mieap induces intramitochondrial lysosome-like organella that plays a critical role in the elimination of oxidized mitochondrial proteins (designated MALM for Mieap-induced accumulation of lysosome-like organelles within mitochondria). However, a large part of the mechanisms for MQC remains unknown. Here, we report additional mechanisms for Mieap-regulated MQC. Reactive oxygen species (ROS) scavengers completely inhibited MALM. A mitochondrial outer membrane protein NIX interacted with Mieap in a ROS-dependent manner via the BH3 domain of NIX and the coiled-coil domain of Mieap. Deficiency of NIX also completely impaired MALM. When MALM was inhibited, Mieap induced vacuole-like structures (designated as MIV for Mieap-induced vacuole), which engulfed and degraded the unhealthy mitochondria by accumulating lysosomes. The inactivation of p53 severely impaired both MALM and MIV generation, leading to accumulation of unhealthy mitochondria. These results suggest that (1) mitochondrial ROS and NIX are essential factors for MALM, (2) MIV is a novel mechanism for lysosomal degradation of mitochondria, and (3) the p53-Mieap pathway plays a pivotal role in MQC by repairing or eliminating unhealthy mitochondria via MALM or MIV generation, respectively.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。