Ex Vivo Radiolabeling and In Vivo PET Imaging of T Cells Expressing Nuclear Reporter Genes

表达核报告基因的 T 细胞的体外放射性标记和体内 PET 成像

阅读:8
作者:Maxim A Moroz, Pat Zanzonico, Jason T Lee, Vladimir Ponomarev

Abstract

Recent advances in T cell-based immunotherapies from bench to bedside have highlighted the need for improved diagnostic imaging of T cell trafficking in vivo and the means to noninvasively investigate failures in treatment response. T cells expressing tumor-associated T cell receptors (TCRs) or engineered with chimeric antigen receptors (CARs) face multiple challenges, including possible influence of genetic engineering on T cell efficacy, inhibitory effects of the tumor microenvironment, tumor checkpoint proteins and on-target, off-tissue toxicities (Kershaw et al., Nat Rev Cancer 13:525-541, 2013; Corrigan-Curay et al., Mol Ther 22:1564-1574, 2014; June et al., Sci Trans Med 7:280-287, 2015; Whiteside et al., Clin Cancer Res 22:1845-1855, 2016; Rosenberg and Restifo, Science 348:62-68, 2015). Positron emission tomography (PET) imaging with nuclear reporter genes is potentially one of the most sensitive and noninvasive methods to quantitatively track and monitor function of adoptively transferred cells in vivo. However, in vivo PET detection of T cells after administration into patients is limited by the degree of tracer accumulation per cell in situ and cell density in target tissues. We describe here a method for ex vivo radiolabeling of T cells, a reliable and robust technique for PET imaging of the kinetics of T cell biodistribution from the time of administration to subsequent localization in targeted tumors and other tissues of the body. This noninvasive technique can provide valuable information to monitor and identify the potential efficacy of adoptive cell therapies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。