Background
Although mechanical stimulations are known have a significant impact on cytoskeletal rearrangement, little is known regarding the behavioral alteration of human periodontal ligament cells (hPDLCs) under cyclic strain. The
Conclusion
Cyclic strain promotes cytoskeletal rearrangement of hPDLCs by downregulating the expression levels of Rho-GDIa and upregulating the expression levels of GTP-Rho, Rock and p-cofilin. These observations may provide valuable insight into understanding orthodontic tooth movement as well as alveolar bone remodeling.
Methods
Healthy hPDLCs obtained from teeth extracted for orthodontic purposes were subjected to cyclic strain with physiological loading (10%) at a frequency of 0.1 Hz for 6 h or 24 h using a FX-5000T system. Changes in cell morphology were examined by phase-contrast microscopy, while F-actin reorganization was observed by phalloidin staining and confocal microscopy. Protein expression was analyzed through western blot analysis.
Results
Significant enhancement of cytoskeletal reorganization was observed following exposure to the cyclic strain. In addition, a significant increase was noted in the expression levels of GTP-Rho, Rho-associated protein kinase (ROCK) and p-cofilin, whereas the expression levels of Rho GDP dissociation inhibitors alpha (Rho-GDIa) were reduced in the hPDLCs, compared with the static control cells. More importantly, the Rock inhibitor Y-27632 suppressed cyclic strain-induced cytoskeletal rearrangement of hPDLCs. Additionally, Y-27632 and overexpression of Rho-GDIa were found to lower p-cofilin protein expressions under cyclic strain, while Rho-GDIa siRNA transfection had the opposite effect on the hPDLCs.
