Differential Scanning Fluorimetry and Hydrogen Deuterium Exchange Mass Spectrometry to Monitor the Conformational Dynamics of NBD1 in Cystic Fibrosis

差示扫描荧光法和氢氘交换质谱法监测囊性纤维化中 NBD1 的构象动力学

阅读:4
作者:Naoto Soya, Ariel Roldan, Gergely L Lukacs

Abstract

Cystic fibrosis (CF) is one of the most common, lethal autosomal recessive diseases in Caucasians with a life expectancy of 37-47 years. The CF transmembrane conductance regulator (CFTR) is a plasma membrane ion channel, confined to apical membrane of epithelia, and ensures transepithelial water and solute movement across secretory epithelia in several organs. Numerous CF mutations, including the most prevalent deletion of F508 (ΔF508) in the nucleotide binding domain 1 (NBD1) leads to CFTR global misfolding and premature intracellular degradation at the endoplasmic reticulum (ER). To better understand the misfolding mechanism caused by CF-causing point mutations in the NBD1, which is poorly understood, differential scanning fluorimetry (DSF) and hydrogen deuterium exchange coupled with mass spectrometry (HDX-MS) are the choice of techniques. These established methods can measure the conformational dynamics of the NBD1 globally and at peptide resolution level by monitoring backbone amide HDX, respectively, and will be instrumental to evaluate the mechanism of action of CF mutations and folding correctors that rescue CFTR folding defects via stabilizing the mutant NBD1.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。