Modification of MWCNTs with Bi2WO6 nanoparticles targeting IL-1β and NLRP3 inflammasome via augmented autophagy

利用 Bi2WO6 纳米粒子修饰 MWCNT,通过增强自噬靶向 IL-1β 和 NLRP3 炎症小体

阅读:7
作者:Zenaa R Rahoomi, Duha S Ahmed, Majid S Jabir, Haney Samir, Ayman A Swelum

Abstract

This study reports the facile hydrothermal synthesis of pure Bi2WO6 and Bi2WO6\MWCNTs nanocomposite at specific molar ratio 1:2.5 of Bi2WO6:MWCNTs and elucidates their role in modulating the NLRP3 inflammasome pathway via autophagy induction. Comprehensive characterization techniques, including XRD, Raman, UV.Vis PL,FESEM,EDS and TEM, revealed the successful incorporation of MWCNTs into the Bi2WO6 structures, leading to enhanced crystattlinity, reduced band gap energy (2.4 eV) suppressed charge carrier recombination and mitigated nanoparticles aggregation. Notably, the reduced band gap facikitaed improved visible light harvesting, a crucial attribute for photocatalytic applications. Significantly, the nanocompsoite exhibited a remarkable capacity to augment autophagy in bone marrow-derived macrophages (BMDMs), consequently down-regulating the NLRP3 inflammasom activation and IL-1β secretion upon LPS and ATP stimulation. Immunofluorescence assays unveiled increased co-localization of LC3 and NLRP3, suggestion enhanced targeting of NLRP3 by autophagy. Inhibition of autophagy by 3-MA reversed these effects, confirming the pivotal role of autophagy induction. Furthermore, the nanocomposite attenuated caspase-1 activation and ASC oligomerzation, thereby impeding inflammasome assembly. Collectively, these findings underscore the potential of Bi2WO6\MWCNTs nanocompsite as a multifaceted therapeutic platform, levering its tailored optoelectronic properties and sbility to modulate the NLRP3 infalmmasome via autophagy augmentation. This work covers the way for the development of advanced nanomaterials with tunable functionalities for combating inflammatory disorders and antimicrobial applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。