Interplay of phosphate and carbonate ions with flavin photosensitizers in photodynamic inactivation of bacteria

磷酸根离子和碳酸根离子与黄素光敏剂在细菌光动力灭活中的相互作用

阅读:6
作者:Daniel Bernhard Eckl, Stefanie Susanne Eben, Laura Schottenhaml, Anja Eichner, Rudolf Vasold, Andreas Späth, Wolfgang Bäumler, Harald Huber

Abstract

Photodynamic inactivation (PDI) of pathogenic bacteria is a promising technology in different applications. Thereby, a photosensitizer (PS) absorbs visible light and transfers the energy to oxygen yielding reactive oxygen species (ROS). The produced ROS are then capable of killing microorganisms via oxidative damage of cellular constituents. Among other PS, some flavins are capable of producing ROS and cationic flavins are already successfully applied in PDI. When PDI is used for example on tap water, PS like flavins will encounter various ions and other small organic molecules which might hamper the efficacy of PDI. Thus, the impact of carbonate and phosphate ions on PDI using two different cationic flavins (FLASH-02a, FLASH-06a) was investigated using Staphylococcus aureus and Pseudomonas aeruginosa as model organisms. Both were inactivated in vitro at a low light exposure of 0.72 J cm-2. Upon irradiation, FLASH-02a reacts to single substances in the presence of carbonate or phosphate, whereas the photochemical reaction for FLASH-06a was more unspecific. DPBF-assays indicated that carbonate and phosphate ions decreased the generation of singlet oxygen of both flavins. Both microorganisms could be easily inactivated by at least one PS with up to 6 log10 steps of cell counts in low ion concentrations. Using the constant radiation exposure of 0.72 J cm-2, the inactivation efficacy decreased somewhat at medium ion concentrations but reached almost zero for high ion concentrations. Depending on the application of PDI, the presence of carbonate and phosphate ions is unavoidable. Only upon light irradiation such ions may attack the PS molecule and reduce the efficacy of PDI. Our results indicate concentrations for carbonate and phosphate, in which PDI can still lead to efficient reduction of bacterial cells when using flavin based PS.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。