Adipose-derived mesenchymal stem cells employed exosomes to attenuate AKI-CKD transition through tubular epithelial cell dependent Sox9 activation

脂肪间充质干细胞利用外泌体通过肾小管上皮细胞依赖性 Sox9 激活来减弱 AKI-CKD 转变

阅读:10
作者:Fengming Zhu, Octavia L S Chong Lee Shin, Guangchang Pei, Zhizhi Hu, Juan Yang, Han Zhu, Meng Wang, Jingyi Mou, Jie Sun, Yuxi Wang, Qian Yang, Zhi Zhao, Huzi Xu, Hui Gao, Weiqi Yao, Xiao Luo, Wenhui Liao, Gang Xu, Rui Zeng, Ying Yao

Abstract

Acute kidney injury (AKI) predisposes patients to an increased risk into progressive chronic kidney disease (CKD), however effective treatments are still elusive. This study aimed to investigate the therapeutic efficacy of human adipose-derived MSCs (hAD-MSCs) in the prevention of AKI-CKD transition, and illuminate the role of Sox9, a vital transcription factor in the development of kidney, in this process. C57BL/6 mice were subjected to unilateral renal ischemia/reperfusion (I/R) with or without hAD-MSC treatment. We found that hAD-MSC treatment upregulated the expression of tubular Sox9, promoted tubular regeneration, attenuated AKI, and mitigated subsequent renal fibrosis. However, these beneficial effects were abolished by a drug inhibiting the release of exosomes from hAD-MSCs. Similarly, Sox9 inhibitors reversed these protective effects. Further, we verified that hAD-MSCs activated tubular Sox9 and prevented TGF-β1-induced transformation of TECs into pro-fibrotic phenotype through exosome shuttling in vitro, but the cells did not inhibit TGF-β1-induced transition of fibroblasts into myofibroblasts. Inhibiting the release of exosomes from hAD-MSCs or the expression of Sox9 in TECs reversed these antifibrotic effects. In conclusion, hAD-MSCs employed exosomes to mitigate AKI-CKD transition through tubular epithelial cell dependent activation of Sox9.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。