Iodide ion-imprinted chitosan beads for highly selective adsorption for nuclear wastewater treatment applications

碘离子印迹壳聚糖珠用于核废水处理中的高选择性吸附

阅读:7
作者:Yassmin Handulle Ismail, Kean Wang, Maryam Al Shehhi, Ali Al Hammadi

Abstract

Iodide ions from radioactive iodine isotopes are common contaminants present in nuclear wastewater from nuclear power plants which are considered hazardous contaminants to be released in water sources even at low concentrations due to their association with metabolic disorders, therefore its removal from the nuclear wastewater effluents is necessary. Chitosan beads are natural and cost-efficient adsorbents that have been used for ion removal from wastewater. However, issues of poor selectivity persist in achieving high-efficiency iodide ion removal. In this study, ion-imprinted chitosan beads (IIC) have been synthesized using the phase-inversion method, IIC beads were modified by cross-linking with epichlorohydrin (IIC-EPI) and modified by cross-linking with epichlorohydrin and silicon dioxide nanoparticles (IIC-SiO2-EPI). Through 4 h of batch adsorption experiments, IIC beads achieved a maximum adsorption capacity (Qe) of 0.65 mmol g-1 and showed more preference for the iodide ions compared to the non-imprinted chitosan beads which achieved a maximum adsorption capacity of 0.27 mmol g-1 at pH 7. While the modified beads IIC-EPI and IIC-SiO2-EPI beads have boosted the adsorption capacities to 0.72 mmol g-1 and 0.91 mmol g-1. Scanning electron microscopic cross-sectional images have shown more pores and cavities than the surface images which agrees with the multilayer heterogeneous diffusion suggested by the Freundlich adsorption isotherm, that the experimental data has fitted. Adsorption kinetic data have fitted the Pseudo-second-order model as well as the Weber and Morris intraparticle model, which suggest an intraparticle pore diffusion adsorption mechanism, with the involvement of the physical electrostatic interactions with the cationic chitosan surface.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。