mTOR regulates neuroprotective effect of immunized CD4+Foxp3+ T cells in optic nerve ischemia

mTOR 调节免疫 CD4+Foxp3+ T 细胞在视神经缺血中的神经保护作用

阅读:9
作者:Guochun Chen, Luosheng Tang, Wei Wei, Zhuo Li, Yunping Li, Xuanchu Duan, Huihui Chen

Abstract

The therapeutic potential of targeting CD4+Foxp3+ regulatory T cells (Tregs) remains controversial under the condition of neuroinflammation. This study aims to explore the neuroprotective role of Tregs in optic nerve ischemia (ONI) and evaluate the therapeutic strategy of Tregs transfer with a focus on targeting the mammalian target of rapamycin (mTOR) pathway. Intraocular pressure was transiently increased in adult C57BL/6 mice to induce ONI. Mucosal tolerance of myelin basic protein (MBP) markedly increased retinal ganglion cell (RGC) survival after ONI through enhanced Tregs suppression. mTOR inhibition significantly promoted the frequency of MBP-immunized Tregs in vitro with increased production of anti-inflammatory cytokines. Transient rapamycin treatment highly promoted the immunosuppressive capacity of Tregs and inhibited retinal inflammation in ONI animals. Intravenous infusion of MBP-immunized Tregs, instead of regular Tregs, beneficially modulated immune activities of host retinal CD11b+ cells and CD4+ effector T cells, leading to significant improvement of RGC survival. Importantly, rapamycin treatment further enhanced the neuroprotective effect of Tregs transfer. Taken together, these findings reveal a fine regulation of mTOR signaling on immunized Tregs after acute retinal injury. Adoptive transfer with targeting-mTOR strategy markedly improves neuronal recovery after ONI, supporting the therapeutic potentials of Tregs in acute and chronic neurological disorder.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。