A novel interaction between megakaryocytes and activated fibrocytes increases TGF-β bioavailability in the Gata1(low) mouse model of myelofibrosis

巨核细胞和活化成纤维细胞之间的新相互作用增加了 Gata1(low) 小鼠骨髓纤维化模型中 TGF-β 的生物利用度

阅读:8
作者:Maria Zingariello, Alessandra Ruggeri, Fabrizio Martelli, Manuela Marra, Laura Sancillo, Ilaria Ceglia, Rosa Alba Rana, Anna Rita Migliaccio

Abstract

Despite numerous circumstantial evidences, the pathogenic role of TGF-β in primary myelofibrosis (PMF), the most severe of the Philadelphia-negative myeloproliferative neoplasms, is still unclear because of the modest (2-fold) increases in its plasma levels observed in PMF patients and in the Gata1(low) mouse model. Whether myelofibrosis is associated with increased bioavailability of TGF-β bound to fibrotic fibres is unknown. Transmission electron-microscopy (TEM) observations identified that spleen from PMF patients and Gata1(low) mice contained megakaryocytes with abnormally high levels of TGF-β and collagen fibres embedded in their cytoplasm. Additional immuno-TEM observations of spleen from Gata1(low) mice revealed the presence of numerous activated fibrocytes establishing with their protrusions a novel cellular interaction, defined as peripolesis, with megakaryocytes. These protrusions infiltrated the megakaryocyte cytoplasm releasing collagen that was eventually detected in its mature polymerized form. Megakaryocytes, engulfed with mature collagen fibres, acquired the morphology of para-apoptotic cells and, in the most advanced cases, were recognized as polylobated heterochromatic nuclei surrounded by collagen fibres strictly associated with TGF-β. These areas contained concentrations of TGF-β-gold particles ~1000-fold greater than normal and numerous myofibroblasts, an indication that TGF-β was bioactive. Loss-of-function studies indicated that peripolesis between megakaryocytes and fibrocytes required both TGF-β, possibly for inducing fibrocyte activation, and P-selectin, possibly for mediating interaction between the two cell types. Loss-of-function of TGF-β and P-selectin also prevented fibrosis. These observations identify that myelofibrosis is associated with pathological increases of TGF-β bioavailability and suggest a novel megakaryocyte-mediated mechanism that may increase TGF-β bioavailability in chronic inflammation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。