Amino acid supplementation affects imprinted gene transcription patterns in parthenogenetic porcine blastocysts

氨基酸补充影响孤雌猪囊胚的印迹基因转录模式

阅读:5
作者:Chi-Hun Park, Young-Hee Jeong, Yeun-Ik Jeong, Jeong-Woo Kwon, Taeyoung Shin, Sang-Hwan Hyun, Eui-Bae Jeung, Nam-Hyung Kim, Sang-Kyo Seo, Chang-Kyu Lee, Woo-Suk Hwang

Abstract

To determine whether exogenous amino acids affect gene transcription patterns in parthenogenetic porcine embryos, we investigated the effects of amino acid mixtures in culture medium. Parthenogenetic embryos were cultured in PZM3 medium under four experimental conditions: 1) control (no amino acids except L-glutamine and taurine); 2) nonessential amino acids (NEAA); 3) essential amino acids (EAA); and 4) NEAA and EAA. The rate of development of embryos to the four-cell stage was not affected by treatment. However, fewer (P<0.05) embryos cultured with EAA (12.8%) reached the blastocyst stage as compared with the control group (25.6%) and NEAA group (30.3%). Based on these findings, we identified genes with altered expression in parthenogenetic embryos exposed to medium with or without EAAs. The results indicated that EAA influenced gene expression patterns, particularly those of imprinted genes (e.g., H19, IGF2R, PEG1, XIST). However, NEAAs did not affect impaired imprinted gene expressions induced by EAA. The results also showed that mechanistic target of rapamycin (MTOR) mRNA expression was significantly increased by EAA alone as compared with control cultures, and that the combined treatment with NEAA and EAA did not differ significantly from those of control cultures. Our results revealed that gene transcription levels in porcine embryos changed differentially depending on the presence of EAA or NEAA. However, the changes in the H19 mRNA observed in the parthenogenetic blastocysts expression level was not related to the DNA methylation status in the IGF2/H19 domain. The addition of exogenous amino acid mixtures affected not only early embryonic development, but also gene transcription levels, particularly those of imprinted genes. However, this study did not reveal how amino acids affect expression of imprinted genes under the culture conditions used. Further studies are thus required to fully evaluate how amino acids affect transcriptional regulation in porcine embryos.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。