Synergistic celecoxib and dimethyl-celecoxib combinations block cervix cancer growth through multiple mechanisms

塞来昔布与二甲基塞来昔布的协同作用可通过多种机制阻止宫颈癌的生长

阅读:8
作者:Diana Xochiquetzal Robledo-Cadena, Silvia Cecilia Pacheco-Velázquez, Jorge Luis Vargas-Navarro, Joaquín Alberto Padilla-Flores, Rebeca López-Marure, Israel Pérez-Torres, Tuuli Kaambre, Rafael Moreno-Sánchez, Sara Rodríguez-Enríquez

Conclusions

CXB or DMC combination with canonical chemotherapy may be a promising chemotherapy strategy against cervical cancer growth, because it can selectively block multiple cell processes including inhibition of energy pathways and in consequence ATP-dependent processes such as cell proliferation, glycoprotein-P activity, ROS production and mitophagy, with no apparent effects on non-cancer cells.

Methods

The effect of CXB (5 μM)/CP (2 μM) or CXB (5 μM)/PA (15 μM) and DMC (15 μM)/CP (5 μM) or DMC (15 μM)/PA (20 μM) for 24 h was assayed on cancer cell proliferation, energy metabolism, mitophagy, ROS production, glycoprotein-P activity, DNA stability and apoptosis/necrosis.

Objective

The synergistic inhibitory effect of celecoxib (CXB) and dimethyl-celecoxib (DMC) plus paclitaxel (PA) or cisplatin (CP) on human cervix HeLa and SiHa cells was assessed at multiple cellular levels in order to elucidate the biochemical mechanisms triggered by the synergistic drug combinations.

Results

Drug combinations synergistically decreased HeLa and SiHa cell proliferation (>75%) and arrested cellular cycle by decreasing S and G2/M phases as well as the Ki67 content (HeLa) by 7.5-30 times. Cell viability was preserved (>90%) and no apparent effects on non-cancer cell growth were observed. Mitochondrial and glycolytic protein contents (44-95%) and ΔΨm (45-50%) in HeLa cells and oxidative phosphorylation and glycolysis fluxes (70-90%) in HeLa and SiHa cells were severely decreased, which in turn promoted a drastic fall in the ATP supply (85-88%). High levels of mitophagy proteins in HeLa cells and active mitochondrial digestion in HeLa and SiHa cells was observed. Mitochondrial fission and microtubule proteins were also affected. Intracellular ROS content (2-2.3-fold) and ROS production was stimulated (2.3-4 times), whereas content and activity of glycoprotein-P (45-85%) were diminished. DNA fragmentation was not observed and apoptosis/necrosis was not detected suggesting that cell death could be mainly associated to mitophagy induction. Conclusions: CXB or DMC combination with canonical chemotherapy may be a promising chemotherapy strategy against cervical cancer growth, because it can selectively block multiple cell processes including inhibition of energy pathways and in consequence ATP-dependent processes such as cell proliferation, glycoprotein-P activity, ROS production and mitophagy, with no apparent effects on non-cancer cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。