Characterization of the acyl-ACP thioesterases from Koelreuteria paniculata reveals a new type of FatB thioesterase

对栾树酰基-ACP 硫酯酶的表征揭示了一种新型 FatB 硫酯酶

阅读:7
作者:R Martins-Noguerol, C DeAndrés-Gil, R Garcés, J J Salas, E Martínez-Force, A J Moreno-Pérez

Abstract

Koelreuteria paniculata is a deciduous tree, popular in temperate regions for its ornamental value, which accumulates unusual cyanolipids in its seeds. The seed oil of this plant is rich in the unusual cis-11-eicosenoic fatty acid (20:1, or gondoic acid), a monounsaturated oil of interest to the oleochemical industry. In higher plants, de novo fatty acid biosynthesis takes place in the plastids, a process that is terminated by hydrolysis of the thioester bond between the acyl moiety and the ACP by acyl-ACP thioesterases. The specificity of acyl-ACP thioesterases is fundamental in controlling the fatty acid composition of seed oil. To determine the mechanisms involved in fatty acid biosynthesis in K. paniculata seeds, we isolated, cloned and sequenced two cDNAs encoding acyl-ACP thioesterases in this plant, KpFatA and KpFatB. Both of them were expressed heterologously in Escherichia coli and characterized with different acyl-ACP substrates. The K. paniculata FatB2 displayed unusual substrate specificity, so that unlike most FatB2 type enzymes, it displayed preference for oleoyl-ACP instead of palmitoyl-ACP. This specificity was consistent with the changes in E. coli and N. benthamiana fatty acid composition following heterologous expression of this enzyme. KpFatB also showed certain genetic divergence relative to other FatB-type thioesterases and when modelled, its structure revealed differences at the active site. Together, these results suggest that this thioesterase could be a new class of FatB not described previously.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。