Tetrabromobisphenol A-bis(2,3-dibromopropyl ether) impairs Postnatal Testis Development in Mice: The Microtubule Cytoskeleton as a Sensitive Target

四溴双酚 A-双(2,3-二溴丙基醚)损害小鼠出生后睾丸发育:微管细胞骨架作为敏感靶标

阅读:7
作者:Yuan-Yuan Li, Yi-Ming Xiong, Shu-Yan Zhang, Jing-Lin Deng, Qiao Xue, Xing-Wang Hou, Wen-Bin Liu, Xing-Hong Li, Zhan-Fen Qin

Abstract

Tetrabromobisphenol A-bis(2,3-dibromopropyl ether) (TBBPA-BDBPE), a widely used flame retardant, has been frequently detected in various environmental compartments, but its health hazard remains largely unknown. Here, we investigated the adverse effects of TBBPA-BDBPE (50 and 1000 μg/kg/day) on postnatal testis development in CD-1 mice and the underlying mechanism. Following the first week of maternal exposure, neonatal mice in the high-dose group exhibited reduced seminiferous tubule area, fewer Sertoli cells and germ cells, and damaged microtubules in Sertoli cells; even microtubule damage was also observed in the low-dose group. When exposure extended to adulthood, male offspring in the high-dose group presented more remarkable alterations in reproductive parameters, including reduced sperm count; in the low-dose group, microtubule damage was also observable, along with blood-testis barrier impairment. Further molecular docking analysis and tubulin polymerization assay indicated that TBBPA-BDBPE could interact with tubulin and disrupt its polymerization. Moreover, we observed attenuated microtubules in mouse Sertoli cells in vitro (TM4) following TBBPA-BDBPE treatment, suggesting that TBBPA-BDBPE impaired testis development possibly by interfering with tubulin dynamics. This study not only highlights the male reproductive hazard of TBBPA-BDBPE but also greatly improved the understanding of the molecular mechanism for male reproductive toxicity of chemicals.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。