Hormone- and light-mediated regulation of heat-induced differential petiole growth in Arabidopsis

激素和光介导的拟南芥热诱导叶柄差异生长的调控

阅读:7
作者:Martijn van Zanten, Laurentius A C J Voesenek, Anton J M Peeters, Frank F Millenaar

Abstract

Plants react quickly and profoundly to changes in their environment. A sudden increase in temperature, for example, induces differential petiole growth-driven upward leaf movement (hyponastic growth) in Arabidopsis (Arabidopsis thaliana). We show that accessions that face the strongest fluctuations in diurnal temperature in their natural habitat are least sensitive for heat-induced hyponastic growth. This indicates that heat-induced hyponastic growth is a trait subject to natural selection. The response is induced with kinetics remarkably similar to ethylene- and low light-induced hyponasty in several accessions. Using pharmacological assays, transcript analysis, and mutant analyses, we demonstrate that ethylene and the photoreceptor protein phytochrome B are negative regulators of heat-induced hyponastic growth and that low light, phytochrome A, auxin, polar auxin transport, and abscisic acid are positive regulators of heat-induced hyponastic growth. Furthermore, auxin, auxin polar transport, phytochrome A, phytochrome B, and cryptochromes are required for a fast induction of heat-induced hyponastic growth.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。