Computational Integration of Renal Histology and Urinary Proteomics using Neural Networks

利用神经网络进行肾组织学和尿液蛋白质组学的计算整合

阅读:7
作者:Nicholas Lucarelli, Donghwan Yun, Dohyun Han, Brandon Ginley, Kyung Chul Moon, Avi Rosenberg, John Tomaszewski, Seung Seok Han, Pinaki Sarder

Abstract

Histological image data and molecular profiles provide context into renal condition. Often, a biopsy is drawn to diagnose or monitor a suspected kidney problem. However, molecular profiles can go beyond a pathologist's ability to see and diagnose. Using AI, we computationally incorporated urinary proteomic profiles with microstructural morphology from renal biopsy to investigate new and existing molecular links to image phenotypes. We studied whole slide images of periodic acid-Schiff stained renal biopsies from 56 DN patients matched with 2,038 proteins measured from each patient's urine. Using Seurat, we identified differentially expressed proteins in patients that developed end-stage renal disease within 2 years of biopsy. Glomeruli, globally sclerotic glomeruli, and tubules were segmented from WSI using our previously published HAIL pipeline. For each glomerulus, 315 handcrafted digital image features were measured, and for tubules, 207 features. We trained fully connected networks to predict urinary protein measurements that were differentially expressed between patients who did/ did not progress to ESRD within 2 years of biopsy. The input to this network was either glomerular or tubular histomorphological features in biopsy. Trained network weights were used as a proxy to rank which morphological features correlated most highly with specific urinary proteins. We identified significant image feature-protein pairs by ranking network weights by magnitude. We also looked at which features on average were most significant in predicting proteins. For both glomeruli and tubules, RGB color values and variance in PAS+ areas (specifically basement membrane for tubules) were, on average, more predictive of molecular profiles than other features. There is a strong connection between molecular profile and image phenotype, which can be elucidated through computational methods. These discovered links can provide insight to disease pathways, and discover new factors contributing to incidence and progression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。