Run-Mu-Ling Granules Mitigate Ocular Surface Inflammatory Injury Associated with Dry Eye by Suppressing the NLRP3/GSDMD-Mediated Pyroptosis Pathway

润木灵颗粒通过抑制NLRP3/GSDMD介导的细胞焦亡通路减轻干眼症相关的眼表炎症损伤

阅读:5
作者:Dan Luo #, Hui-Jie Ji #, Xue-Qing Yan, Zi-Meng Wang, Liu-Jiao Li, Li Shi, Wei-Ping Gao, Kai Li

Conclusion

This study suggests that NLRP3/GSDMD-mediated pyroptosis plays a crucial role in the pathogenesis of DE and that inhibition of this pathway is a key mechanism by which RMLG alleviates ocular surface inflammation in DE. These findings suggest that RMLG could be a promising therapeutic option for DE, offering new insights into its molecular action and potential clinical application.

Methods

We established an in-vivo DE rat model and in-vitro human corneal epithelial cell line (HCEC) injury models. Corneal damage severity was evaluated using various tests, including corneal fluorescein staining, tear break-up time, and phenol red tear test. Hematoxylin and eosin staining was used to examine histopathological changes in corneal tissues. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling detected corneal cell damage in rats. Transmission electron microscopy was used to observe the microstructures of corneal tissue. Immunofluorescence and Western blotting analyses were used to assess NLRP3, GSDMD, ASC, caspase-1, IL-18, IL-1β, and TNF-α expression levels in corneal tissues and HCEC. Cell viability was determined using CCK-8 and colony formation assays, and pyroptosis was examined using Annexin V-PI staining.

Purpose

Run-Mu-Ling granules (RMLG), a traditional Chinese medicinal formula, are used to treat dry eye (DE); however, the underlying mechanism remains poorly understood. This study aimed to elucidate the potential molecular mechanisms by which RMLG alleviates ocular surface inflammation in DE.

Results

RMLG significantly improved tear film stability, promoted tear secretion, attenuated corneal tissue damage, enhanced HCEC activity, and suppressed pyroptosis. It also inhibited the activation of the NLRP3/GSDMD signaling pathway in corneal tissues and HCEC, reducing the release of downstream pro-inflammatory cytokines.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。