APP: an Automated Proteomics Pipeline for the analysis of mass spectrometry data based on multiple open access tools

APP:基于多种开放获取工具的质谱数据分析自动化蛋白质组学流程

阅读:5
作者:Erik K Malm, Vaibhav Srivastava, Gustav Sundqvist, Vincent Bulone

Background

Mass spectrometry analyses of complex protein samples yield large amounts of data and specific expertise is needed for data analysis, in addition to a dedicated computer infrastructure. Furthermore, the identification of proteins and their specific properties require the use of multiple independent bioinformatics tools and several database search algorithms to process the same datasets. In order to facilitate and increase the speed of data analysis, there is a need for an integrated platform that would allow a comprehensive profiling of thousands of peptides and proteins in a single process through the simultaneous exploitation of multiple complementary algorithms.

Conclusions

APP provides distributed computing nodes that are simple to set up, greatly relieving the need for separate IT competence when handling large datasets. The modular nature of APP allows complex workflows to be managed and distributed, speeding up throughput and setup. Additionally, APP logs execution information on all executed tasks and generated results, simplifying information management and validation.

Results

We have established a new proteomics pipeline designated as APP that fulfills these objectives using a complete series of tools freely available from open sources. APP automates the processing of proteomics tasks such as peptide identification, validation and quantitation from LC-MS/MS data and allows easy integration of many separate proteomics tools. Distributed processing is at the core of APP, allowing the processing of very large datasets using any combination of Windows/Linux physical or virtual computing resources. Conclusions: APP provides distributed computing nodes that are simple to set up, greatly relieving the need for separate IT competence when handling large datasets. The modular nature of APP allows complex workflows to be managed and distributed, speeding up throughput and setup. Additionally, APP logs execution information on all executed tasks and generated results, simplifying information management and validation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。