Pinctada martensii Hydrolysate Modulates the Brain Neuropeptidome and Proteome in Diabetic (db/db) Mice via the Gut-Brain Axis

马氏珠母贝水解物通过肠脑轴调节糖尿病 (db/db) 小鼠的大脑神经肽组和蛋白质组

阅读:6
作者:Jiayun Li, Yijun Lv, Yuanqing Wei, Xinzhi Wang, Shenghan Yan, Binyuan Zhao, Jipeng Sun, Rui Liu, Yueyang Lai

Abstract

Pinctada martensii hydrolysate (PMH) has been proved to have the effect of ameliorating disorders of glucose and lipid metabolism in db/db mice, but the mechanism of its hyperglycemia effect is still unclear. Bacterial communities in fecal samples from a normal control group, a diabetic control group, and a PMH-treated diabetes mellitus type 2 (T2DM) group were analyzed by 16S gene sequencing. Nano LC-MS/MS was used to analyze mice neuropeptides and proteomes. The 16S rDNA sequencing results showed that PMH modulated the structure and composition of the gut microbiota and improved the structure and composition of Firmicutes and Bacteroidetes at the phylum level and Desulfovibrionaceae and Erysipelatoclostridiaceae at the family level. Furthermore, the expressions of functional proteins of the central nervous system, immune response-related protein, and proteins related to fatty acid oxidation in the brain disrupted by an abnormal diet were recovered by PMH. PMH regulates the brain neuropeptidome and proteome and further regulates blood glucose in diabetic mice through the gut-brain axis. PMH may be used as a prebiotic agent to attenuate T2DM, and target-specific microbial species may have unique therapeutic promise for metabolic diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。