Adsorption of the hydrophobic organic pollutant hexachlorobenzene to phyllosilicate minerals

疏水性有机污染物六氯苯在层状硅酸盐矿物上的吸附

阅读:8
作者:Leonard Böhm, Peter Grančič, Eva Scholtzová, Benjamin Justus Heyde, Rolf-Alexander Düring, Jan Siemens, Martin H Gerzabek, Daniel Tunega

Abstract

Hexachlorobenzene (HCB), a representative of hydrophobic organic chemicals (HOC), belongs to the group of persistent organic pollutants (POPs) that can have harmful effects on humans and other biota. Sorption processes in soils and sediments largely determine the fate of HCB and the risks arising from the compound in the environment. In this context, especially HOC-organic matter interactions are intensively studied, whereas knowledge of HOC adsorption to mineral phases (e.g., clay minerals) is comparatively limited. In this work, we performed batch adsorption experiments of HCB on a set of twelve phyllosilicate mineral sorbents that comprised several smectites, kaolinite, hectorite, chlorite, vermiculite, and illite. The effect of charge and size of exchangeable cations on HCB adsorption was studied using the source clay montmorillonite STx-1b after treatment with nine types of alkali (M+: Li, K, Na, Rb, Cs) and alkaline earth metal cations (M2+: Mg, Ca, Sr, Ba). Molecular modeling simulations based on density functional theory (DFT) calculations to reveal the effect of different cations on the adsorption energy in a selected HCB-clay mineral system accompanied this study. Results for HCB adsorption to minerals showed a large variation of solid-liquid adsorption constants Kd over four orders of magnitude (log Kd 0.9-3.3). Experiments with cation-modified montmorillonite resulted in increasing HCB adsorption with decreasing hydrated radii of exchangeable cations (log Kd 1.3-3.8 for M+ and 1.3-1.4 for M2+). DFT calculations predicted (gas phase) adsorption energies (- 76 to - 24 kJ mol-1 for M+ and - 96 to - 71 kJ mol-1 for M2+) showing a good correlation with Kd values for M2+-modified montmorillonite, whereas a discrepancy was observed for M+-modified montmorillonite. Supported by further calculations, this indicated that the solvent effect plays a relevant role in the adsorption process. Our results provide insight into the influence of minerals on HOC adsorption using HCB as an example and support the relevance of minerals for the environmental fate of HOCs such as for long-term source/sink phenomena in soils and sediments.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。