Impact of pyrrolidine-bispyrrole DNA minor groove binding agents and chirality on global proteomic profile in Escherichia Coli

吡咯烷-双吡咯 DNA 小沟结合剂和手性对大肠杆菌整体蛋白质组学的影响

阅读:4
作者:Ya-Ting Yang, Chun-Yu Lin, Jingyueh Jeng, Chi-Wi Ong

Background

There is great interest in the design of small molecules that selectively target minor grooves of duplex DNA for controlling specific gene expression implicated in a disease. The design of chiral small molecules for rational drug design has attracted increasing attention due to the chirality of DNA. Yet, there is limited research on the chirality effect of minor groove binders on DNA interaction, especially at the protein expression level. This paper is an attempt to illustrate that DNA binding affinity might not provide a full picture on the biological activities. Drug interacting at the genomic level can be translated to the proteomic level. Here we have illustrated that although the chiral bispyrrole-pyrrolidine-oligoamides, PySSPy and PyRSPy, showed low binding affinity to DNA, their influence at the proteomic level is significant. More importantly, the chirality also plays a role. Two-dimensional proteomic profile to identify the differentially expressed protein in Escherichia coli DH5α (E coli DH5α) were investigated.

Conclusion

The current results showed that the chiral PySSPy and PyRSPy impact on the proteomic profiling of E coli DH5α, implicating the importance of drug chirality on biological activities at the molecular level.

Results

E coli DH5α incubated with the chiral PySSPy and PyRSPy, diastereomeric at the pyrrolidine ring, showed differential expression of eighteen proteins as observed through two dimensional proteomic profiling. These eighteen proteins identified by MALDI_TOF/TOF MS include antioxidant defense, DNA protection, protein synthesis, chaperone, and stress response proteins. No statistically significant toxicity was observed at the tested drug concentrations as measured via MTT assay.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。