Fast Field-Cycling Nuclear Magnetic Resonance Relaxometry of Perfluorosulfonic Acid Ionomers and Their Perfluorosulfonyl Fluoride Precursors Membranes

全氟磺酸离子聚合物及其全氟磺酰氟前体膜的快速场循环核磁共振弛豫测量

阅读:4
作者:Makoto Yamaguchi, Seiichi Kuroda, Takahiko Asaoka, Kazuhiko Shinohara

Abstract

The spin-lattice relaxation rates (R1) of fluorine nuclei in perfluorosulfonic acid (PFSA) ionomer membranes and their precursor solid perfluorosulfonyl fluoride (PFSF) were measured by fast field-cycling (FFC) NMR relaxometry. The XRD profiles of PFSA and PFSF are similar and show a characteristic peak, indicating the alignment of main chains. While the SAXS profiles of the PFSA membranes show two peaks, those of the solid PFSF lack the ionomer peak which is characteristic of hydrophilic side chains in the PFSA ionomer membranes. The Larmor frequency dependence of R1 obeys power law and the indices are dependent on the sample and temperature. The indices of the PFSA membranes change from -1/2 to -1 along with the Larmor frequency and temperature dependence decrease, which is consistent with the generalized defect diffusion model. Estimated activation energies are in good agreement with those obtained from dynamical mechanical analysis and dielectric spectroscopy, indicating the segmental motion of the backbones as the common origin of these observations. On the other hand, the index changes to -3/4 in the case of the PFSFs, which has been predicted by the reptation model.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。