Integrated transcriptomic and metabolomic analyses of yellow horn (Xanthoceras sorbifolia) in response to cold stress

文冠果(Xanthoceras sorbifolia)对寒冷胁迫的综合转录组学和代谢组学分析

阅读:5
作者:Juan Wang, Jinping Guo, Yunxiang Zhang, Xingrong Yan

Abstract

Xanthoceras sorbifolia, a medicinal and oil-rich woody plant, has great potential for biodiesel production. However, little study explores the link between gene expression level and metabolite accumulation of X. sorbifolia in response to cold stress. Herein, we performed both transcriptomic and metabolomic analyses of X. sorbifolia seedlings to investigate the regulatory mechanism of resistance to low temperature (4 °C) based on physiological profile analyses. Cold stress resulted in a significant increase in the malondialdehyde content, electrolyte leakage and activity of antioxidant enzymes. A total of 1,527 common differentially expressed genes (DEGs) were identified, of which 895 were upregulated and 632 were downregulated. Annotation of DEGs revealed that amino acid metabolism, glycolysis/gluconeogenesis, starch and sucrose metabolism, galactose metabolism, fructose and mannose metabolism, and the citrate cycle (TCA) were strongly affected by cold stress. In addition, DEGs within the plant mitogen-activated protein kinase (MAPK) signaling pathway and TF families of ERF, WRKY, NAC, MYB, and bHLH were transcriptionally activated. Through metabolomic analysis, we found 51 significantly changed metabolites, particularly with the analysis of primary metabolites, such as sugars, amino acids, and organic acids. Moreover, there is an overlap between transcript and metabolite profiles. Association analysis between key genes and altered metabolites indicated that amino acid metabolism and sugar metabolism were enhanced. A large number of specific cold-responsive genes and metabolites highlight a comprehensive regulatory mechanism, which will contribute to a deeper understanding of the highly complex regulatory program under cold stress in X. sorbifolia.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。