Interleukin-33 / Cyclin D1 imbalance in severe liver steatosis predicts susceptibility to ischemia reperfusion injury

严重肝脏脂肪变性中的白细胞介素 33/细胞周期蛋白 D1 失衡可预测缺血再灌注损伤的易感性

阅读:5
作者:Kelley G Núñez, Anderson Frank, Janet Gonzalez-Rosario, Gretchen Galliano, Kim Bridle, Darrell Crawford, John Seal, Frank Abbruscato, Himanshu Vashistha, Paul T Thevenot, Ari J Cohen

Abstract

Transplanting donor livers with severe macrosteatosis is associated with increased risk of primary non-function (PNF). The purpose of this study was to identify steatosis-driven biomarkers as a predisposition to severe liver damage and delayed recovery following ischemia reperfusion injury. Wistar rats were fed a methionine- and choline-deficient (MCD) diet for up to three weeks to achieve severe macrosteatosis (>90%). Animals underwent diet withdrawal to control chow and/or underwent ischemia reperfusion and partial hepatectomy injury (I/R-PHx) and reperfused out to 7 days on control chow. For animals with severe macrosteatosis, hepatic levels of IL-33 decreased while Cyclin D1 levels increased in the absence of NF-κB p65 phosphorylation. Animals with high levels of nuclear Cyclin D1 prior to I/R-PHx either did not survive or had persistent macrosteatosis after 7 days on control chow. Survival 7 days after I/R-PHx fell to 57% which correlated with increased Cyclin D1 and decreased liver IL-33 levels. In the absence of I/R-PHx, withdrawing the MCD diet normalized IL-33, Cyclin D1 levels, and I/R-PHx survival back to baseline. In transplanted grafts with macrosteatosis, higher Cyclin D1 mRNA expression was observed. Shifts in Cyclin D1 and IL-33 expression may identify severely macrosteatotic livers with increased failure risk if subjected to I/R injury. Clinical validation of the panel in donor grafts with macrosteatosis revealed increased Cyclin D1 expression corresponding to delayed graft function. This pre-surgical biomarker panel may identify the subset of livers with increased susceptibility to PNF.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。