Plant-Growth-Promoting Rhizobacteria Improve Seeds Germination and Growth of Argania spinosa

促进植物生长的根际细菌促进摩洛哥坚果种子的发芽和生长

阅读:6
作者:Naima Chabbi, Salahddine Chafiki, Maryem Telmoudi, Said Labbassi, Rachid Bouharroud, Abdelghani Tahiri, Rachid Mentag, Majda El Amri, Khadija Bendiab, Driss Hsissou, Abdelaziz Mimouni, Naima Ait Aabd, Redouan Qessaoui

Abstract

Argania spinosa is among the most important species of the Moroccan forest in terms of ecological, environmental, and socio-economic aspects. However, it faces a delicate balance between regeneration and degradation in its natural habitat. Hence, the efforts to preserve and regenerate argan forests are crucial for biodiversity, soil quality, and local livelihoods, yet they face challenges like overgrazing and climate change. Sustainable management practices, including reforestation and community engagement, are vital for mitigating degradation. Similarly, exploiting the argan tree's rhizosphere can enhance soil quality by leveraging its rich microbial diversity. This approach not only improves crop growth but also maintains ecosystem balance, ultimately benefiting both agriculture and the environment. This enrichment can be achieved by different factors: mycorrhizae, plant extracts, algae extracts, and plant growth-promoting rhizobacteria (PGPR). The benefits provided by PGPR may include increased nutrient availability, phytohormone production, shoot, root development, protection against several plant pathogens, and disease reduction. In this study, the effect of rhizobacteria isolated from the Agran rhizosphere was evaluated on germination percentage and radicle length for Argania spinosa in vitro tests, growth, collar diameter, and branching number under greenhouse conditions. One hundred and twenty (120) bacteria were isolated from the argan rhizosphere and evaluated for their capacity for phosphate solubilization and indole acetic acid production. The results showed that 52 isolates could solubilize phosphorus, with the diameters of the solubilization halos varying from 0.56 ± 0.14 to 2.9 ± 0.08 cm. Among 52 isolates, 25 were found to be positive for indole acetic acid production. These 25 isolates were first tested on maize growth to select the most performant ones. The results showed that 14 isolates from 25 tested stimulated maize growth significantly, and 3 of them by 28% (CN005, CN006, and CN009) compared to the control. Eight isolates (CN005, CN006, CN004, CN007, CN008, CN009, CN010, and CN011) that showed plant growth of more than 19% were selected to evaluate their effect on argan germination rate and radicle length and were subjected to DNA extraction and conventional Sanger sequencing. The 8 selected isolates were identified as: Brevundimonas naejangsanensis sp2, Alcaligenes faecalis, Brevundimonas naejangsanensis sp3, Brevundimonas naejangsanensis sp4, Leucobacter aridicollis sp1, Leucobacter aridicollis sp2, Brevundimonas naejangsanensis sp1, and Staphylococcus saprophyticus. The results showed that Leucobacter aridicollis sp2 significantly increased the germination rate by 95.83%, and the radicle length with a value of 2.71 cm compared to the control (1.60 cm), followed by Brevundimonas naejangsanensis sp3 and Leucobacter aridicollis sp1 (2.42 cm and 2.11 cm, respectively). Under greenhouse conditions, the results showed that the height growth increased significantly for Leucobacter aridicollis sp1 (42.07%) and Leucobacter aridicollis sp2 (39.99%). The isolates Brevundimonas naejangsanensis sp3 and Leucobacter aridicollis sp1 increased the gain of collar diameter by 41.56 and 41.21%, respectively, followed by Leucobacter aridicollis sp2 and Staphyloccocus saprophyticus (38.68 and 22.79%). Leucobacter aridicollis sp1 increased the ramification number per plant to 12 compared to the control, which had 6 ramifications per plant. The use of these isolates represents a viable alternative in sustainable agriculture by improving the germination rate and root development of the argan tree, as well as its development, while increasing the availability of nutrients in the soil and consequently improving fertilization.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。