Artificial Neurons on Flexible Substrates: A Fully Printed Approach for Neuromorphic Sensing

柔性基板上的人工神经元:一种用于神经形态传感的全印刷方法

阅读:7
作者:Surya A Singaraju, Dennis D Weller, Thurid S Gspann, Jasmin Aghassi-Hagmann, Mehdi B Tahoori

Abstract

Printed electronic devices have demonstrated their applicability in complex electronic circuits. There is recent progress in the realization of neuromorphic computing systems (NCSs) to implement basic synaptic functions using solution-processed materials. However, a fully printed neuron is yet to be realised. We demonstrate a fully printed artificial neuromorphic circuit on flexible polyimide (PI) substrate. Characteristic features of individual components of the printed system were guided by the software training of the NCS. The printing process employs graphene ink for passive structures and In2O3 as active material to print a two-input artificial neuron on PI. To ensure a small area footprint, the thickness of graphene film is tuned to target a resistance and to obtain conductors or resistors. The sheet resistance of the graphene film annealed at 300 °C can be adjusted between 200 Ω and 500 kΩ depending on the number of printed layers. The fully printed devices withstand a minimum of 2% tensile strain for at least 200 cycles of applied stress without any crack formation. The area usage of the printed two-input neuron is 16.25 mm2, with a power consumption of 37.7 mW, a propagation delay of 1 s, and a voltage supply of 2 V, which renders the device a promising candidate for future applications in smart wearable sensors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。