Manufacturing CD20/CD19-targeted iCasp9 regulatable CAR-TSCM cells using a Quantum pBac-based CAR-T engineering system

使用基于 Quantum pBac 的 CAR-T 工程系统制造 CD20/CD19 靶向 iCasp9 可调节 CAR-TSCM 细胞

阅读:4
作者:Peter S Chang, Yi-Chun Chen, Wei-Kai Hua, Jeff C Hsu, Jui-Cheng Tsai, Yi-Wun Huang, Yi-Hsin Kao, Pei-Hua Wu, Po-Nan Wang, Yi-Fang Chang, Ming-Chih Chang, Yu-Cheng Chang, Shiou-Ling Jian, Jiann-Shiun Lai, Ming-Tain Lai, Wei-Cheng Yang, Chia-Ning Shen, Kuo-Lan Karen Wen, Sareina Chiung-Yuan Wu

Abstract

CD19-targeted chimeric antigen receptor (CAR) T cell therapies have driven a paradigm shift in the treatment of relapsed/refractory B-cell malignancies. However, >50% of CD19-CAR-T-treated patients experience progressive disease mainly due to antigen escape and low persistence. Clinical prognosis is heavily influenced by CAR-T cell function and systemic cytokine toxicities. Furthermore, it remains a challenge to efficiently, cost-effectively, and consistently manufacture clinically relevant numbers of virally engineered CAR-T cells. Using a highly efficient piggyBac transposon-based vector, Quantum pBac™ (qPB), we developed a virus-free cell-engineering system for development and production of multiplex CAR-T therapies. Here, we demonstrate in vitro and in vivo that consistent, robust and functional CD20/CD19 dual-targeted CAR-T stem cell memory (CAR-TSCM) cells can be efficiently produced for clinical application using qPB™. In particular, we showed that qPB™-manufactured CAR-T cells from cancer patients expanded efficiently, rapidly eradicated tumors, and can be safely controlled via an iCasp9 suicide gene-inducing drug. Therefore, the simplicity of manufacturing multiplex CAR-T cells using the qPB™ system has the potential to improve efficacy and broaden the accessibility of CAR-T therapies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。