Preharvest Spray Hexanal Formulation Enhances Postharvest Quality in 'Honeycrisp' Apples by Regulating Phospholipase D and Calcium Sensor Proteins Genes

采收前喷雾己醛配方通过调节磷脂酶 D 和钙传感蛋白基因来提高蜜脆苹果采收后的品质

阅读:5
作者:Karthika Sriskantharajah, Walid El Kayal, Murali Mohan Ayyanath, Praveen K Saxena, Alan J Sullivan, Gopinadhan Paliyath, Jayasankar Subramanian

Abstract

Honeycrisp' (Malus domestica Borkh.), a premium applecultivar, is highly susceptible to bitter pit and decline in quality during long-term storage. In order to enhance the quality, an aqueous composition containing hexanal was applied as a preharvest spray. The effects of hexanal were assessed on the treated fruit and compared with HarvistaTM (a sprayable 1-Methylcyclopropene based commercial formulation) applied and control fruit under both cold (2.5 °C; four months) and cold after room temperature storage (20 °C; 14 days) conditions. Color, firmness, and total soluble solids (TSS) did not show a significant change in response to any treatment at harvest, while abscisic acid (ABA) significantly reduced and tryptophan increased in response to hexanal, compared to HarvistaTM and control. The treatment effects on quality traits were observed during storage. Both hexanal and HarvistaTM sprayed apples had higher TSS under both cold and room temperature storage. In addition, both sprays enhanced firmness at room temperature storage. However, the effects of sprays on other quality traits showed a different pattern. Apples sprayed with hexanal had lower phospholipase D enzyme (PLD) activity, lower incidence of bitter pit, and decreased expression of MdPLDα1 compared to HarvistaTM and control. On the other hand, HarvistaTM treated fruit produced lower ethylene. Both sprays decreased the expression of MdPLDα4, MdCaM2, MdCaM4 and MdCML18 genes. Generally, PLD alpha has a direct role in promoting fruit senescence, whereas the calcium senor proteins (CaM/CMLs) may involve in fruit ripening process via calcium and ethylene interactions. Therefore, improved postharvest qualities, including the lower incidence of bitter pit in hexanal treated 'Honeycrisp', may be associated with lower membrane damage due to lower PLD enzyme activity and decreased expression of MdPLDα1 and MdPLDα4 genes throughout the storage period.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。