The Role of Epicardial Adipose Tissue-Derived Proteins in Heart Failure with Preserved Ejection Fraction and Atrial Fibrillation: A Bioinformatics Analysis

心外膜脂肪组织衍生蛋白在射血分数保留的心力衰竭和心房颤动中的作用:生物信息学分析

阅读:5
作者:Kai Huang #, Jie Lu #, Qin Li, Chuyi Wang, Sufan Ding, Xiangyang Xu, Lin Han

Background

The accumulation of epicardial adipose tissue (EAT) is associated with cardiometabolic risks and adverse outcomes in heart failure with preserved ejection fraction (HFpEF) and atrial fibrillation (AF). This study aims to identify genes secreted by EAT that contribute to the shared pathogenesis of HFpEF and AF, potentially serving as biomarkers for diagnosis.

Conclusion

This study identified EAT-derived secretory proteins as potential biomarkers for HFpEF and AF, with ITPKA and WNT9B as central hub genes. These findings offer insights into potential diagnostic and therapeutic strategies for HFpEF and AF.

Methods

Data sets from the GEO database for HFpEF-EAT, HFpEF-heart tissue, AF-EAT, AF-PBMC, and AF-heart tissue were analyzed. Differential expression analysis and weighted gene co-expression network analysis (WGCNA) identified key genes in EAT linked to HFpEF and AF. Functional enrichment and connectivity map analyses explored common pathways and therapeutic targets. Machine learning techniques, including LASSO regression, random forest, and support vector machine, identified shared biomarkers. CIBERSORT was used to assess immune cell infiltration, while gene set enrichment analysis identified pathways related to hub genes. Receiver operating characteristic (ROC) curve analysis and experimental validation assessed the bioinformatics findings.

Results

In the HFpEF dataset, 200 key genes were identified by intersecting HFpEF-EAT, HFpEF-heart tissue, WGCNA analyses, and secretory proteins. For AF, 232 related genes were identified through similar methods. Thirteen genes were common between HFpEF and AF, with two central genes, ITPKA and WNT9B, selected as potential biomarkers through machine learning and ROC analysis. Immune cell infiltration and gene set enrichment analysis revealed pathways related to ITPKA/WNT9B. These patterns were confirmed in human samples.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。