Identity, proliferation capacity, genomic stability and novel senescence markers of mesenchymal stem cells isolated from low volume of human bone marrow

从低容量人类骨髓中分离的间充质干细胞的身份、增殖能力、基因组稳定性和新的衰老标志物

阅读:7
作者:Gabrielis Kundrotas, Evelina Gasperskaja, Grazina Slapsyte, Zivile Gudleviciene, Jan Krasko, Ausra Stumbryte, Regina Liudkeviciene

Abstract

Human bone marrow mesenchymal stem cells (hBM-MSCs) hold promise for treating incurable diseases and repairing of damaged tissues. However, hBM-MSCs face the disadvantages of painful invasive isolation and limited cell numbers. In this study we assessed characteristics of MSCs isolated from residual human bone marrow transplantation material and expanded to clinically relevant numbers at passages 3-4 and 6-7. Results indicated that early passage hBM-MSCs are genomically stable and retain identity and high proliferation capacity. Despite the chromosomal stability, the cells became senescent at late passages, paralleling the slower proliferation, altered morphology and immunophenotype. By qRT-PCR array profiling, we revealed 13 genes and 33 miRNAs significantly differentially expressed in late passage cells, among which 8 genes and 30 miRNAs emerged as potential novel biomarkers of hBM-MSC aging. Functional analysis of genes with altered expression showed strong association with biological processes causing cellular senescence. Altogether, this study revives hBM as convenient source for cellular therapy. Potential novel markers provide new details for better understanding the hBM-MSC senescence mechanisms, contributing to basic science, facilitating the development of cellular therapy quality control, and providing new clues for human disease processes since senescence phenotype of the hematological patient hBM-MSCs only very recently has been revealed.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。