Exploring the Endothelin-1 pathway in chronic thromboembolic pulmonary hypertension microvasculopathy

探索慢性血栓栓塞性肺动脉高压微血管病中的内皮素-1通路

阅读:6
作者:Benchenouf Feriel, Cuomo Alessandra, Gorth J Deborah, Normand Corinne, Thuillet Raphaël, Ottaviani Mina, Akamkam Ali, Menager Jean-Baptiste, Fadel Guillaume, Grynblat Julien, Ghigna Maria-Rosa, Fadel Elie, Savale Laurent, Mercier Olaf, Tu Ly, Humbert Marc, Guignabert Christophe

Abstract

Targeted vasopeptide therapies have significantly advanced the management of pulmonary arterial hypertension (PAH). However, due to insufficient preclinical evidence regarding the involvement of the endothelin-1 (ET-1) pathway in chronic thromboembolic pulmonary hypertension (CTEPH) pathophysiology, the potential of ET-1 receptor antagonism in treating CTEPH remains uncertain. In this study, we investigated the role of the ET-1 pathway in CTEPH microvasculopathy using a multifaceted approach. Plasma ET-1 levels were measured in a cohort of 59 CTEPH patients and 41 healthy controls. Additionally, we evaluated the expression of key ET-1 pathway members in pulmonary explants from CTEPH, idiopathic PAH, and control patients. We used an in vitro system to test the hypothesis that the turbulent flow, observed near the vascular obstructions pathognomonic of CTEPH, enhances ET-1 expression. Our findings were further validated in vivo using a CTEPH piglet model that contains distinct regions representing pre- and post-thrombus lung territories. We found a twofold increase in circulating ET-1 levels in CTEPH patients compared to healthy subjects. Pulmonary explants from CTEPH patients exhibited pronounced overexpression of ET-1, endothelin receptor A (ETA), and phosphorylated myosin light chain (p-MLC) in muscularized pulmonary microvessels, suggesting heightened vascular contraction. In vitro experiments showed that turbulent flow facilitates ET-1 secretion compared to laminar flow regions. Additionally, in the CTEPH piglet model, elevated plasma ET-1 levels were observed compared to controls. Immunofluorescence and confocal microscopy analyses confirmed increased ETA and p-MLC in remodeled arteries from both pulmonary territories. However, ET-1 protein elevation was exclusively observed in the obstructed territory. These findings collectively indicate impaired vascular tone in microvessels of CTEPH patients and the CTEPH piglet model. Furthermore, our data implicates the ET-1 pathway in microvasculopathy, with turbulent flow playing a pathological role. These insights underscore the potential utility of ET-1 receptor antagonists as a promising therapeutic approach for CTEPH treatment.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。