Expansion of human bone marrow-derived mesenchymal stromal cells with enhanced immunomodulatory properties

具有增强免疫调节特性的人类骨髓间充质基质细胞的扩增

阅读:6
作者:Shu Hui Neo #, Zhisheng Her #, Rashidah Othman, Ching Ann Tee, Li Ching Ong, Yuehua Wang, Irwin Tan, Jaylen Tan, Yanmeng Yang, Zheng Yang, Qingfeng Chen, Laurie A Boyer

Background

Mesenchymal stromal cells (MSCs) have broad potential as a cell therapy including for the treatment of drug-resistant inflammatory conditions with abnormal T cell proliferation such as graft-versus-host disease (GVHD). Clinical success, however, has been complicated by the heterogeneity of culture-expanded MSCs as well as donor variability. Here, we devise culture conditions that promote expansion of MSCs with enhanced immunomodulatory functions both in vitro and in animal models of GVHD.

Conclusion

Our study provides evidence that ex vivo expansion of MSCs at high confluency alters the metabolic and transcriptomic states of these cells. Importantly, this approach maximizes the production of MSCs with enhanced immunomodulatory functions without priming, thus providing a non-invasive and generalizable strategy for improving the use of MSCs for the treatment of inflammatory diseases.

Methods

Human bone marrow-derived MSCs were expanded at high-confluency (MSCHC) and low-confluency state (MSCLC). Their immunomodulatory properties were evaluated with in vitro co-culture assays based on suppression of activated T cell proliferation and secretion of pro-inflammatory cytokines from activated T cells. Metabolic state of these cells was determined, while RNA sequencing was performed to explore transcriptome of these MSCs. Ex vivo expanded MSCHC or MSCLC was injected into human peripheral blood mononuclear cells (PBMC)-induced GVHD mouse model to determine their in vivo therapeutic efficacy based on clinical grade scoring, human CD45+ blood count and histopathological examination.

Results

As compared to MSCLC, MSCHC significantly reduced both the proliferation of anti-CD3/CD28-activated T cells and secretion of pro-inflammatory cytokines upon MSCHC co-culture across several donors even in the absence of cytokine priming. Mechanistically, metabolic analysis of MSCHC prior to co-culture with activated T cells showed increased glycolytic metabolism and lactate secretion compared to MSCLC, consistent with their ability to inhibit T cell proliferation. Transcriptome analysis further revealed differential expression of immunomodulatory genes including TRIM29, BPIFB4, MMP3 and SPP1 in MSCHC as well as enriched pathways including cytokine-cytokine receptor interactions, cell adhesion and PI3K-AKT signalling. Lastly, we demonstrate in a human PBMC-induced GVHD mouse model that delivery of MSCHC showed greater suppression of inflammation and improved outcomes compared to MSCLC and saline controls.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。