Nonmotor symptoms of Parkinson's disease revealed in an animal model with reduced monoamine storage capacity

单胺储存能力降低的动物模型显示出帕金森病的非运动症状

阅读:4
作者:Tonya N Taylor, W Michael Caudle, Kennie R Shepherd, AliReza Noorian, Chad R Jackson, P Michael Iuvone, David Weinshenker, James G Greene, Gary W Miller

Abstract

Parkinson's disease (PD) is a progressive neurodegenerative disorder that is characterized by the loss of dopamine neurons in the substantia nigra pars compacta, culminating in severe motor symptoms, including resting tremor, rigidity, bradykinesia, and postural instability. In addition to motor deficits, there are a variety of nonmotor symptoms associated with PD. These symptoms generally precede the onset of motor symptoms, sometimes by years, and include anosmia, problems with gastrointestinal motility, sleep disturbances, sympathetic denervation, anxiety, and depression. Previously, we have shown that mice with a 95% genetic reduction in vesicular monoamine transporter expression (VMAT2-deficient, VMAT2 LO) display progressive loss of striatal dopamine, L-DOPA-responsive motor deficits, alpha-synuclein accumulation, and nigral dopaminergic cell loss. We hypothesized that since these animals exhibit deficits in other monoamine systems (norepinephrine and serotonin), which are known to regulate some of these behaviors, the VMAT2-deficient mice may display some of the nonmotor symptoms associated with PD. Here we report that the VMAT2-deficient mice demonstrate progressive deficits in olfactory discrimination, delayed gastric emptying, altered sleep latency, anxiety-like behavior, and age-dependent depressive behavior. These results suggest that the VMAT2-deficient mice may be a useful model of the nonmotor symptoms of PD. Furthermore, monoamine dysfunction may contribute to many of the nonmotor symptoms of PD, and interventions aimed at restoring monoamine function may be beneficial in treating the disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。