The G32E functional variant reduces activity of PPARD by nuclear export and post-translational modification in pigs

G32E功能变体通过核输出和翻译后修饰降低猪体内PPARD的活性

阅读:7
作者:Yanyu Duan, Bertram Brenig, Xiaohui Wu, Jun Ren, Lusheng Huang

Abstract

Peroxisome proliferator-activated receptor beta/delta (PPARD) is a crucial and multifaceted determinant of diverse biological functions including lipid metabolism, embryonic development, inflammatory response, wound healing and cancer. Recently, we proposed a novel function of porcine PPARD (sPPARD) in external ear development. A missense mutation (G32E) in an evolutionary conservative domain of sPPARD remarkably increases external ear size in pigs. Here, we investigated the underlying molecular mechanism of the causal mutation at the cellular level. Using a luciferase reporter system, we showed that the G32E substitution reduced transcription activity of sPPARD in a ligand-dependent manner. By comparison of the subcellular localization of wild-type and mutated sPPARD in both PK-15 cells and pinna cartilage-derived primary chondrocytes, we found that the G32E substitution promoted CRM-1 mediated nuclear exportation of sPPARD. With the surface plasmon resonance technology, we further revealed that the G32E substitution had negligible effect on its ligand binding affinity. Finally, we used co-immunoprecipitation and luciferase reporter assays to show that the G32E substitution greatly reduced ubiquitination level by blocking ubiquitination of the crucial A/B domain and consequently decreased transcription activity of sPPARD. Taken together, our findings strongly support that G32E is a functional variant that plays a key role in biological activity of sPPARD, which advances our understanding of the underlying mechanism of sPPARD G32E for ear size in pigs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。