Study on the Anti-Atherosclerotic Mechanisms of Xin-Tong-Tai Granule Through Network Pharmacology, Molecular Docking, and Experimental Validation

通过网络药理学、分子对接及实验验证研究心痛泰颗粒抗动脉粥样硬化的作用机制

阅读:6
作者:Junping Zhu, Ziyan Wang, Chengxin Liu, Min Shi, Zhihua Guo, Ya Li, Rong Yu, Jiaming Wei

Background

Xin-Tong-Tai Granule (XTTG), a Chinese medicine (CM) formula, has demonstrated significant therapeutic effects on atherosclerosis (AS) in both clinical and experimental settings. Nonetheless, the mechanisms underlying XTTG's efficacy remain largely unexplored. This study aimed to elucidate the mechanisms through which XTTG acts against AS, employing network pharmacology, molecular docking, and experimental validation techniques.

Conclusion

XTTG mitigates AS primarily through anti-inflammatory and autophagy-modulating mechanisms, particularly via inhibition of NF-κB p65 expression. These findings underscore the potential of CM in treating AS and support its further clinical exploration.

Methods

Initially, target identification for the main chemical components of XTTG was conducted using database, followed by determining the intersection targets between these compounds and disease. Protein-protein interaction (PPI) network analysis, Gene Ontology (GO) enrichment, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were subsequently utilized to investigate the potential pathways through which XTTG exerts its effects on AS. Molecular docking was done to confirm the binding efficacy of XTTG's active components. Additionally, the effects of XTTG were evaluated in vitro using oxidized low-density lipoprotein (ox-LDL) induced human aortic vascular smooth muscle cells (HAVSMCs) and in vivo in apolipoprotein E gene knockout (ApoE-/-) mice fed a high-fat diet (HFD).

Results

229 therapeutic targets were screened for PPI network and enrichment analysis. Notably, the nuclear factor kappa-B (NF-κB) signaling pathway, along with processes related to inflammation and autophagy, were significantly enriched, highlighting their importance. In vitro studies showed that XTTG repressed cell proliferation and lipid droplet aggregation in ox-LDL-induced HAVSMCs. It also decreased the ratio of phosphorylated NF-κB p65/ NF-κB p65, tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) levels, and elevated microtubule-associated protein light chain 3 (LC3) and decreased p62 protein expression. In vivo, XTTG ameliorated blood lipid profiles and aortic pathology in HFD-fed ApoE-/- mice, reduced NF-κB p65 expression and serum levels of TNF-α and IL-6, increased the ratio of LC3II/LC3I while decreasing p62 protein expression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。