Insight into the regulatory networks underlying the high lipid perennial ryegrass growth under different irradiances

深入了解不同光照下高脂多年生黑麦草生长的调控网络

阅读:8
作者:Somrutai Winichayakul, Richard Macknight, Liam Le Lievre, Zac Beechey-Gradwell, Robyn Lee, Luke Cooney, Hong Xue, Tracey Crowther, Philip Anderson, Kim Richardson, Xiuying Zou, Dorothy Maher, Gregory Bryan, Nick Roberts

Abstract

Under favourable conditions, perennial ryegrass (Lolium perenne) engineered to accumulated high lipid (HL) carbon sink in their leaves was previously shown to also enhance photosynthesis and growth. The greater aboveground biomass was found to be diminished in a dense canopy compared to spaced pots. Besides, the underlying genetic regulatory network linking between leaf lipid sinks and these physiological changes remains unknown. In this study, we demonstrated that the growth advantage was not displayed in HL Lolium grown in spaced pots under low lights. Under standard lights, analysis of differentiating transcripts in HL Lolium reveals that the plants had elevated transcripts involved in lipid metabolism, light capturing, photosynthesis, and sugar signalling while reduced expression of genes participating in sugar biosynthesis and transportation. The plants also had altered several transcripts involved in mitochondrial oxidative respiration and redox potential. Many of the above upregulated or downregulated transcript levels were found to be complemented by growing the plants under low light. Overall, this study emphasizes the importance of carbon and energy homeostatic regulatory mechanisms to overall productivity of the HL Lolium through photosynthesis, most of which are significantly impacted by low irradiances.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。