A Versatile Photocrosslinkable Silicone Composite for 3D Printing Applications

适用于 3D 打印应用的多功能光交联硅胶复合材料

阅读:6
作者:Mecit Altan Alioglu, Yasar Ozer Yilmaz, Ethan Michael Gerhard, Vaibhav Pal, Deepak Gupta, Syed Hasan Askari Rizvi, Ibrahim T Ozbolat

Abstract

Embedded printing has emerged as a valuable tool for fabricating complex structures and microfluidic devices. Currently, an ample of amount of research is going on to develop new materials to advance its capabilities and increase its potential applications. Here, we demonstrate a novel, transparent, printable, photocrosslinkable, and tuneable silicone composite that can be utilized as a support bath or an extrudable ink for embedded printing. Its properties can be tuned to achieve ideal rheological properties, such as optimal self-recovery and yield stress, for use in 3D printing. When used as a support bath, it facilitated the generation microfluidic devices with circular channels of diameter up to 30 μm. To demonstrate its utility, flow focusing microfluidic devices were fabricated for generation of Janus microrods, which can be easily modified for multitude of applications. When used as an extrudable ink, 3D printing of complex-shaped constructs were achieved with integrated electronics, which greatly extends its potential applications towards soft robotics. Further, its biocompatibility was tested with multiple cell types to validate its applicability for tissue engineering. Altogether, this material offers a myriad of potential applications (i.e., soft robotics, microfluidics, bioprinting) by providing a facile approach to develop complicated 3D structures and interconnected channels.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。