Synthesis of Platinum Nanocrystals Dispersed on Nitrogen-Doped Hierarchically Porous Carbon with Enhanced Oxygen Reduction Reaction Activity and Durability

合成分散于氮掺杂分级多孔碳上的铂纳米晶体,增强氧还原反应活性和耐久性

阅读:9
作者:Min Li, Feng Liu, Supeng Pei, Zongshang Zhou, Kai Niu, Jianbo Wu, Yongming Zhang

Abstract

Platinum-based catalysts are widely used for efficient catalysis of the acidic oxygen reduction reaction (ORR). However, the agglomeration and leaching of metallic Pt nanoparticles limit the catalytic activity and durability of the catalysts and restrict their large-scale commercialization. Therefore, this study aimed to achieve a uniform distribution and strong anchoring of Pt nanoparticles on a carbon support and improve the ORR activity and durability of proton-exchange membrane fuel cells. Herein, we report on the facile one-pot synthesis of a novel ORR catalyst using metal-nitrogen-carbon (M-N-C) bonding, which is formed in situ during the ion exchange and pyrolysis processes. An ion-exchange resin was used as the carbon source containing R-N+(CH3)3 groups, which coordinate with PtCl62- to form nanosized Pt clusters confined within the macroporous framework. After pyrolysis, strong M-N-C bonds were formed, thereby preventing the leaching and aggregation of Pt nanoparticles. The as-synthesized Pt supported on the N-doped hierarchically porous carbon catalyst (Pt/NHPC-800) showed high specific activity (0.3 mA cm-2) and mass activity (0.165 A mgPt-1), which are approximately 2.7 and 1.5 times higher than those of commercial Pt/C, respectively. The electrochemical surface area of Pt/NHPC-800 remained unchanged (~1% loss) after an accelerated durability test of 10,000 cycles. The mass activity loss after ADT of Pt/NHPC-800 was 18%, which is considerably lower than that of commercial Pt/C (43%). Thus, a novel ORR catalyst with highly accessible and homogeneously dispersed Pt-N-C sites, high activity, and durability was successfully prepared via one-pot synthesis. This facile and scalable synthesis strategy for high-efficiency catalysts guides the further synthesis of commercially available ORR catalysts.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。