The role of Asprosin in patients with dilated cardiomyopathy

Asprosin 在扩张型心肌病患者中的作用

阅读:7
作者:Ming-Shien Wen, Chao-Yung Wang, Jih-Kai Yeh, Chun-Chi Chen, Ming-Lung Tsai, Ming-Yun Ho, Kuo-Chun Hung, I-Chang Hsieh

Background

Asprosin is a novel fasting glucogenic adipokine discovered in 2016. Asprosin induces rapid glucose releases from the liver. However, its molecular mechanisms and function are still unclear. Adaptation of energy substrates from fatty acid to glucose is recently considered a novel therapeutic target in heart failure treatment. We hypothesized that the asprosin is able to modulate cardiac mitochondrial functions and has important prognostic implications in dilated cardiomyopathy (DCM) patients.

Conclusions

In patients with DCM, elevated plasma asprosin levels are associated with less adverse cardiovascular events in five years. The underlying protective mechanisms of asprosin may be linked to its functions relating to enhanced mitochondrial respiration under hypoxia.

Methods

We prospectively enrolled 50 patients (86% male, mean age 55 ± 13 years) with DCM and followed their 5-year major adverse cardiovascular events from 2012 to 2017. Comparing with healthy individuals, DCM patients had higher asprosin levels (191.2 versus 79.7 ng/mL, P < 0.01).

Results

During the 5-year follow-up in the study cohort, 16 (32.0%) patients experienced adverse cardiovascular events. Patients with lower asprosin levels (< 210 ng/mL) were associated with increased risks of adverse clinical outcomes with a hazard ratio of 7.94 (95% CI 1.88-33.50, P = 0.005) when compared patients with higher asprosin levels (≥ 210 ng/mL). Using cardiomyoblasts as a cellular model, we showed that asprosin prevented hypoxia-induced cell death and enhanced mitochondrial respiration and proton leak under hypoxia. Conclusions: In patients with DCM, elevated plasma asprosin levels are associated with less adverse cardiovascular events in five years. The underlying protective mechanisms of asprosin may be linked to its functions relating to enhanced mitochondrial respiration under hypoxia.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。