Astragalosides promote angiogenesis via vascular endothelial growth factor and basic fibroblast growth factor in a rat model of myocardial infarction

黄芪苷通过血管内皮生长因子和碱性成纤维细胞生长因子促进大鼠心肌梗死模型中的血管生成

阅读:8
作者:Jun-Min Yu, Xiao-Bo Zhang, Wen Jiang, Hui-Dong Wang, Yi-Na Zhang

Abstract

The aim of the present study was to evaluate the effect of astragalosides (ASTs) on angiogenesis, as well as the expression of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) following myocardial infarction (MI). MI was induced in rats by ligation of the left coronary artery. Twenty‑four hours after surgery, the rats were divided into low‑dose, high‑dose, control and sham surgery groups (n=8 per group). The low‑ and high‑dose groups were treated with ASTs (2.5 and 10 mg/kg/day, respectively, via intraperitoneal injection), while, the control and sham surgery group rats received saline. Serum levels, and mRNA and protein expression levels of VEGF and bFGF, as well as the microvessel density (MVD) were determined four weeks post‑treatment. Twenty‑four hours post‑surgery, VEGF and bFGF serum levels were observed to be comparable between the groups; while at four weeks, the VEGF and bFGF levels were higher in the AST‑treated rats (P<0.01). Similarly, VEGF and bFGF mRNA and protein expression levels were higher following AST treatment (P<0.05). No difference in VEGF mRNA expression between the low‑ and high‑dose groups was noted, however, an increase in the bFGF expression levels was detected in the high‑dose group. Newly generated blood vessels were observed following MI, with a significant increase in MVD observed in the AST‑treated groups (P<0.05). AST promotes angiogenesis of the heart and increases VEGF and bFGF expression levels. Thus, it is hypothesized that increased VEGF and bFGF levels may contribute to the AST‑induced increase in angiogenesis in rat models of MI.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。