Assessment of Digestion and Absorption Properties of 1,3-Dipalmitoyl-2-Oleoyl Glycerol-Rich Lipids Using an In Vitro Gastrointestinal Digestion and Caco-2 Cell-Mediated Coupled Model

使用体外胃肠消化和 Caco-2 细胞介导耦合模型评估富含 1,3-二棕榈酰-2-油酰甘油的脂质的消化和吸收特性

阅读:10
作者:Hyeon-Jun Chang, A-Young Lee, Jeung-Hee Lee

Abstract

The digestion and absorption properties of 1,3-dipalmitoyl-2-oleoyl glycerol (POP)-rich lipids was evaluated using in vitro gastrointestinal digestion and a Caco-2 cell-mediated coupled model. Caco-2 cell viability and monolayer integrity were assessed by an MTT assay and transepithelial electrical resistance. The IC50 for bile salts, pancreatin, and free fatty acid (FFA) were 0.22 mM, 0.22 mg/mL, and 1.47 mM, respectively, and no cytotoxicity was observed for bovine serum albumin (0.01-0.20 mM) or triacylglycerol (1.00-10.00 mM). The in vitro-digested POP-rich lipid containing FFA > 2.95 mM caused the disruption of monolayer tight junctions in Caco-2 cells. The major triacylglycerols (TAG) of POP-rich lipids were POP (50.8%), POO (17.8%), POL/OPL/PLO (7.6%), PPO (7.1%), and PLP (6.8%). Following digestion and uptake into Caco-2 cells, the resynthesized TAGs included PPO (20.6%), PPP (15.9%), POO (14.0%), POL/OPL/PLO (12.2%), POP (10.9%), OOO (7.5%), OPO (7.0%), OOL/OLO (6.7%), PLP (3.1%), and PPL (2.2%). The secreted major TAGs were POL/OPL/PLO (50.8%), PPP (11.1%), and OOL/OLO (8.4%), indicating a diverse TAG profile in newly synthesized lipids. This study provides a coupled model for lowering cytotoxicity and maintaining the monolayer in Caco-2 cells, and for evaluating the digestion and absorption properties of functional lipids containing specific fatty acids incorporated into TAG.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。