Effect of Tricin on cardiomyocyte damage caused by diabetic cardiomyopathy (DCM)

Tricin 对糖尿病性心肌病(DCM)所致心肌细胞损伤的影响

阅读:6
作者:Rong Yu, Yaping Zhang, Tong Wang, Jinju Duan, Xiaoming Li

Conclusions

Tricin exhibits a protective role against high glucose-induced cardiac damage in a DCM cell model. By reducing oxidative stress and inflammation, and inhibiting the TLR4-MYD88-NF-κB pathway, Tricin shows significant therapeutic potential for DCM treatment. This study underscores the value of Tricin as a novel therapeutic approach for managing diabetic cardiomyopathy, warranting further research and clinical investigation. Clinical trial number: Not applicable.

Methods

Rat H9C2 cells were cultured and subjected to high glucose conditions to establish a DCM cell model. Tricin was administered in varying concentrations to evaluate its effects on cellular oxidative stress markers, including ROS, LDH, and SOD. Additionally, the levels of inflammatory cytokines TNF-α, IL-1β, and IL-6, as well as the expression of TLR4, MYD88, and p-NF-κB, were assessed through ELISA and Western blotting.

Results

Tricin treatment significantly ameliorated high glucose-induced oxidative stress in H9C2 cells, evidenced by reduced ROS and LDH levels and increased SOD levels in a dose-dependent manner. Furthermore, Tricin effectively suppressed the elevation of pro-inflammatory cytokines TNF-α, IL-1β, and IL-6. Tricin also inhibited the overactivation of the TLR4-MYD88-NF-κB signaling pathway, suggesting its role in modulating key inflammatory processes in DCM. Conclusions: Tricin exhibits a protective role against high glucose-induced cardiac damage in a DCM cell model. By reducing oxidative stress and inflammation, and inhibiting the TLR4-MYD88-NF-κB pathway, Tricin shows significant therapeutic potential for DCM treatment. This study underscores the value of Tricin as a novel therapeutic approach for managing diabetic cardiomyopathy, warranting further research and clinical investigation. Clinical trial number: Not applicable.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。